品牌  【直播】  50强   整机  ​【联盟】  机构  【视界】  展会  招聘  云服务          微博   公众号AIrobot518 
【​今日焦点
【行业动态】
NEWS / 新闻中心
智能制造的核心技术之智能控制
来源:智造苑 | 作者:智造苑 | 发布时间: 875天前 | 4464 次浏览 | 分享到:
智能控制是控制理论与人工智能的交叉成果,是经典控制理论在现代的进一步发展,其解决问题的能力和适应性相较于经典控制方法有显著提高。由于智能控制是一门新兴学科,正处于发展阶段,因此尚无统一的定义,存在多种描述形式。美国IEEE协会将智能控制归纳为:智能控制必须具有模拟人类学习和自适应的能力。

   「1. 智能控制的概念」

智能控制是控制理论与人工智能的交叉成果,是经典控制理论在现代的进一步发展,其解决问题的能力和适应性相较于经典控制方法有显著提高。由于智能控制是一门新兴学科,正处于发展阶段,因此尚无统一的定义,存在多种描述形式。美国IEEE协会将智能控制归纳为:智能控制必须具有模拟人类学习和自适应的能力。

我国蔡自兴教授认为:智能控制是一类能独立地驱动智能机器实现其目标的自动控制,智能机器是能在各类环境中自主地或交互地执行各种拟人任务的机器。1996年,蔡自兴教授把信息论(information theory,IT)引入智能控制学科结构,在国际上率先提出了图1所示智能控制的“四元交集结构理论”。




图1 基于四元论的智能控制


「2. 智能控制的特点」

传统控制控制方法存在以下几点局限性:

(1)缺乏适应性,无法应对大范围的参数调整和结构变化。

(2)需要基于控制对象建立精确的数学模型。

(3)系统输入信息模式单一,信息处理能力不足。

(4)缺乏学习能力。

智能控制能克服传统控制理论的局限性,将控制理论方法和人工智能技术相结合,产生拟人的思维活动,采用智能控制的系统主要有以下几个特点:

(1)智能控制系统能有效利用拟人的控制策略和被控对象及环境信息,实现对复杂系统的有效全局控制,具有较强的容错能力和广泛的适应性。

(2)智能控制系统具有混合控制特点,既包括数学模型,也包含以知识表示的非数学广义模型,实现定性决策与定量控制相结合的多模态控制方式。

(3)智能控制系统具有自适应、自组织、自学习、自诊断和自修复功能,能从系统的功能和整体优化的角度来分析和综合系统,以实现预定的目标。

(4)控制器具有非线性和变结构的特点,能进行多目标优化。

这些特点使智能控制相较于传统控制方法,更适用于解决不确定性、模糊性、时变性、复杂性和不完全性的系统控制问题。

「3. 智能控制的关键技术」

1)专家控制

专家控制又称专家智能控制,其结构如图2所示。采用专家控制的控制系统一般由以下几部分组成:

(1)知识库。由事实集和经验数据、经验公式、规则等构成。事实集包括对象的有关知识,如结构、类型及特征等。控制规则有自适应、自学习、参数自调整等方面的规则。经验数据包括对象的参数变化范围、控制参数的调整范围及其限幅值、传感器特性、系统误差、执行机构特征、控制系统的性能指标以及经验公式。

(2)控制算法库。存放控制策略及控制方法,如PID、神经网络控制、预测控制算法等,是直接基本控制方法集。

(3)推理机。根据一定的推理策略(正向推理,即从原始数据和已知条件得到结论)从知识库中选择有关知识,对控制专家提供的控制算法、事实、证据以及实时采集的系统特性数据进行推理,直到得出相应的最佳控制决策,由决策的结果指导控制作用。

图2 专家控制基本结构

按照专家控制的作用和功能,一般分为以下两种类型:

(1)直接型专家控制器。该类控制器取代常规控制器,直接控制被控对象。一般情况下,直接型控制器任务和功能相对简单,要求在线工作。

(2)间接型专家控制器。该类控制器用于和常规控制器相结合,实现高层决策功能,如优化适应、协调、组织等。一般优化适应型需要在线工作,组织协调型可以工作在离线。

2)模糊控制

模糊控制是将模糊理论、模糊逻辑推理和模糊语言变量与控制理论和方法相结合的一种智能控制方法,目的是模仿人的模糊推理和决策过程,实现智能控制。模糊控制器包括以下几个部分:

(1)模糊化接口。用于将输入转化为模糊量。它首先将输入变量转化到相应的模糊集论域;最后应用模糊集对应的隶属函数将精确输入量转换为模糊值。

(2)知识库。由数据库和规则库组成。数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值,在规则推理的模糊关系方程求解过程中,向推理机提供数据。规则库由一组语言控制规则组成,例如IF-THEN、ELSE、ALSO等,表达了应用领域的专家经验和控制策略。

(3)推理机。根据模糊规则,运用模糊推理算法,获得模糊控制量。模糊推理的方法有很多,如MAX-MIN法、模糊加权推理法、函数型推理法等。

(4)解模糊接口。系统的具体控制需求一个精确量,所以需要通过解模糊接口将模糊量转换成精确量,实现对系统精确的控制作用。

模糊控制器的基本结构如图3所示。


图3 模糊控制器基本结构

模糊控制系统的分类有很多种方式,例如按照信号的时特性可以分为恒值和随动模糊控制系统;按照系统输入变量的多少,可以分为单变量和多变量模糊控制系统;按照静态误差可以分为有差和无差模糊控制系统。

虽然模糊控制理论的发展已经历经半个世纪,然而在实际应用层面,模糊控制还存在诸多限制。例如,模糊规则和隶属度函数的建立依赖经验,难以适应复杂系统,亟待进一步完善。

3)神经网络控制

人工神经网络由神经元模型构成。神经元是神经网络的基本处理单元,是一种多输入、单输出的非线性元件,多个神经元构成神经网络。神经网络具有强大的非线性映射能力、并行处理能力、容错能力以及自学习自适应能力。因此,非常适合将神经网络用于

​​​​第六期“全国移动机器人行业巡回调研活动”合作商招募中

​报名热线:400-0756-518​​​​

活动时间:2023-09-01至11-30

  • 寻迹智行无人叉车实力看得见
  • 海康威视与南水北调集团座谈交流,共同推动水网建设场景数字化
  • 【多车混跑】蚂蚁机器人助力头部新能源汽车企业全流程自动化
  • 实力见证|立镖机器人连续荣获“最佳合作伙伴”荣誉!
  • 创新驱动 品质卓越 |中鼎科技智能重载搬运机器人全新亮相
  • 行深智能|无人车30万公里测试铸就金身,质量大会省长毛伟明亲临关注
  • 九曜智能重磅发布无人平衡重抱夹车,赋能造纸行业物流升级效率革命
  • 超近距离也能看清楚!海康威视微距摄像机小身材,大用途