[行业新闻] 优艾智合-西安交大具身智能机器人研究院正式......
2024-11-21
[行业新闻] 又一智能制造装备企业上市失败,客户包括小米......
2024-11-21
2024-11-21
[行业新闻] “木牛流马”第二个独立运营品牌 “PALO......
2024-11-20
2024-11-20
[行业新闻] 格力智能|珠港联动,共筑智慧物流新生态 —......
2024-11-20
[行业新闻] 长安汽车未来五年内计划投入超500亿元,布......
2024-11-20
[行业新闻] CRIC | 2024中国机器人企业家峰会......
2024-11-19
[行业新闻] 库卡新品发布 | KMP 600P缔造智慧......
2024-11-19
[行业新闻] 下一个机器人爆品!中国智能割草机器人正在收......
2024-11-18
[518原创] 携手同行·共启新程|搬易通MiMA天......
2024-11-23
[518原创] 【CeMAT ASIA回顾】叉车AM......
2024-11-22
[518原创] 瑞搏特完成CPD15-YD平衡重叉车......
2024-11-22
[518原创] 让移动更流畅——深圳格局的CeMAT......
2024-11-16
图4 某反应单元温度控制系统
2)智能控制在机器人控制中的应用
工业机器人被大量应用于工业生产中。近些年,快递行业的兴起使物流机器人、无人机和其他专用机器人也获得快速发展和应用。机器人种类的增多、规模的扩大和任务的多样化极大地提高了控制的要求。传统控制技术存在的缺陷,如无法应对复杂系统、适应性差、不具备学习能力等,限制了其在机器人控制中的应用。智能控制技术能很好地避免这些缺陷,更适合复杂化和多元化的任务要求,并促进机器人的应用。智能控制在机器人领域的应用主要集中在以下两个方面:
(1)运动控制。通过将智能控制与机器人伺服系统相结合,可以实现机器人的高精度定位和对环境的适应。结合柔顺控制算法,可以提高机器人与环境或人交互地安全性。
(2)路径规划和控制。采用智能算法对机器人运动的路径进行优化设计,可有效避免多个机器人的碰撞或干涉。同时,智能算法的应用可以提高机器人运动路径控制的精度。
例如,采用遗传算法规划码垛机器人运动路径。码垛机器人需要将包装物体运送到不同的区域,在复杂的障碍环境下,需要规划一条安全、无碰撞且最短的可行路径。通过建立优化问题模型,采用智能算法可以规避复杂的求解过程,获取高质量的优化结果。这里,通过对特定环境的建模和对适应度函数的设计,采用遗传算法对该路径规划问题进行求解,可以获得最优路径,从而能提升码垛机器人的工作效率,如图5所示。进一步的,通过改进遗传算法中的策略,可以提高收敛速度,获得更平滑的路径。
图5 基于遗传算法的路径优化
3)智能控制在车床控制中的应用
车床被广泛应用于制造领域中。传统控制方法需要人工预设工艺参数,十分繁琐,而且控制精度较低,难以达到预期的控制效果。随着科技的不断发展,制造过程中车床控制开始朝着更智能化的方向发展。将智能控制技术应用于车床,可以提高零件加工的精度、效率和柔性。智能控制技术在车床控制中的应用主要有以下两个方面。
(1)车床运动轨迹控制。车床进给系统存在跟踪误差,特别是当加工面比较复杂时,加工轨迹的突变导致较大偏差,会极大影响控制精度。应用智能控制技术对进给系统进行建模和控制,可以有效降低跟踪误差,提高系统稳定性。
(2)工艺参数优化。机床加工中,切削参数和刀具参数会直接影响零件加工质量、效率和能耗。基于不同优化目标,如加工工时和能耗,设置相应的评价指标,采用智能算法对典型的工艺参数进行优化,能提高加工效率,降低能耗和碳排放。
例如,采用迭代学习控制对车床进给系统驱动轴进行控制,如图6所示。在机床加工过程中,进给系统沿复杂加工面运动时,跟踪误差导致运动轨迹偏离,影响加工精度。基于对进给系统跟踪误差和动力学模型的分析,设计迭代学习更新规律,通过迭代学习时实际位置与期望位置收敛,从而减小跟踪误差。进一步的,可以结合扰动观测器提高控制精度和系统稳定性。
图6 双轴进给驱动系统
1)当前面临的问题
(1)应用范围不够广泛。针对一些简单系统,智能控制的优越性相较于传统控制方法并不突出。
(2)实际应用还存在技术瓶颈。许多控制技术还停留在“仿真”水平,未能应用于解决实际问题。在系统运行速度、模块化设计、对环境的感知和解释、传感器接口等许多方面还需要做更多工作。
(3)可靠性和稳定性不足。许多智能控制技术依赖于人的经验,如专家控制。然而如何获取有效的专家经验知识,构造能长期稳定运行的系统是一个重要难题。此外,部分智能控制方法的鲁棒性问题缺乏严格的数学推导,也对控制的稳定性提出挑战。
2)未来发展趋势
(1)多学科交叉融合形成新突破。一方面是智能控制与计算机科学、模糊数学、进化论、模式识别、信息论、仿生学和认识心理学等其他学科的相互促进,另一方面是智能控制领域内不同技术的渗透,如深度学习和强化学习的相互补偿。
(2)寻求更新的理论框架。智能控制尝试实现甚至超越人类智能,既需要结合涉及哲学、心理学、认知科学等抽象学科,又需要基于控制科学、生理学、人工智能等学科,建立更高层次的智能控制框架。
(3)智能控制的应用创新。研究适合智能控制的软、硬件平台,提升基于现有计算资源的控制水平,进行更好的技术集成,以解决智能控制在实际应用中存在的问题。
第六期“全国移动机器人行业巡回调研活动”合作商招募中
报名热线:400-0756-518
活动时间:2023-09-01至11-30
Copyright © 2018-2025, 服务热线 400-0756-518
www.zhineng518.com,All rights reserved
版权所有 © 518智能装备在线 未经许可 严禁复制 【冀ICP备19027659号-2】 【公安备13050002001911】
运营商:河北大为信息科技有限公司